首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low‐bandwidth space/frequency component separation for quantitative imaging
Authors:Mikhail Zubkov  Timothy Stait‐Gardner  William S Price
Institution:Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, Australia
Abstract:Quantitative MRI is often used to analyse multicomponent systems. The analysis requires the contributions from different species to be isolated. Species with distinct chemical shifts can be separated by using a low acquisition bandwidth, which is easy to achieve in common quantitative imaging protocols. The bandwidth reduction leads to separation of NMR contributions from different species in the image space. This new method was implemented and tested on two multicomponent systems containing several spectrally and spatially unresolved components with both distinctly different and similar diffusion coefficients and relaxation times. Separation was achieved with routine MRI diffusion and relaxation measurement pulse sequences in a microimaging environment for water/polyethylene glycol solution and for chloroform/TMS/polyethylene glycol solution. Conventional monoexponential fitting was used to determine diffusion coefficients and relaxation times from the spectrally separated data, whereas biexponential or triexponential fitting was required in the unseparated reference experiments. In the two‐component sample, the variation in the determined fast diffusing components was on the same order of magnitude for all experiments, while the variation in the slow diffusing polyethylene glycol was larger when no separation was present. The separation technique provided lower variability for all the determined diffusion coefficients and relaxation times in the three‐component sample. The low‐bandwidth separation method can provide separation of multicomponent systems based on the chemical shift difference between the species. The accuracy of the technique is comparable with the commonly used methods for bicomponent system analysis and surpasses those when there are more than two components in the sample. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:1H  diffusion  low bandwidth  MRI  multicomponent  quantitative  suppression
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号