首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NMR paramagnetic relaxation of the spin 2 complex Mn(III)TSPP: a unique mechanism
Authors:Schaefle Nathaniel  Sharp Robert
Institution:Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
Abstract:The S = 2 complex, manganese(III) meso-tetra(4-sulfonatophenyl)porphine chloride (Mn(III)TSPP) is a highly efficient relaxation agent with respect to water protons and has been studied extensively as a possible MRI contrast agent. The NMR relaxation mechanism has several unique aspects, key among which is the unusual role of zero-field splitting (zfs) interactions and the effect of these interactions on the electron spin dynamics. The principal determinant of the shape of the R1 magnetic relaxation dispersion (MRD) profile is the tetragonal 4th-order zfs tensor component, B4(4), which splits the levels of the m(S) = +/-2 non-Kramers doublet. When the splitting due to B4(4) exceeds the Zeeman splitting, the matrix elements of (S(z)) are driven into coherent oscillation, with the result that the NMR paramagnetic relaxation enhancement is suppressed. To confirm the fundamental aspects of this mechanism, proton R1 MRD data have been collected on polyacrylamide gel samples in which Mn(III)TSPP is reorientationally immobilized. Solute immobilization suppresses time-dependence in the electron spin Hamiltonian that is caused by Brownian motion, simplifying the theoretical analysis. Simultaneous fits of both gel and solution data were achieved using a single set of parameters, all of which were known or tightly constrained from prior experiments except the 4th-order zfs parameter, B4(4), and the electron spin relaxation times, which were found to differ in the m(S) = +/-1 and m(S) = +/-2 doublet manifolds. In liquid samples, but not in the gels, the B4(4)-induced splitting of the m(S) = +/-2 non-Kramers doublet is partially collapsed due to Brownian motion. This phenomenon affects the magnitudes of both B4(4) and electron spin relaxation times in the liquid samples.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号