首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strain-induced passivity breakdown in corrosion crack initiation
Authors:A P Jivkov  
Institution:Division of Solid Mechanics, Malmö University, 205 06, Malmö, Sweden
Abstract:Corrosion crack nucleation and growth are modelled as a moving boundary problem. The model incorporates three physical processes––dissolution, passivation and straining––into a continuum mechanical framework. The dissolution triggers surface advance; the passivation restrains the access of the environment to bare metal; the deformation causes for passivity breakdown. Plane cracks nucleating from surface pits in an elastic–plastic material body under fatigue load are considered. The problem is solved using a FEM program and a moving boundary tracking procedure. The model simulates how cracks form and grow in a single continuous course. The geometry of the developed cracks is found independent of the initial pit size. Plasticity is found to influence the curvature at the tip of the nucleated corrosion cracks. The most important evolution length parameter, the width of the corrosion crack, is found to depend on the size constraints of the tracking procedure. It is concluded that the model is deficient for determining all length scales observed in reality. Physical processes to be considered in an advanced model are proposed and discussed.
Keywords:Stress-corrosion cracking  Crack evolution  Moving boundary  Finite elements  Crack geometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号