首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Local Structure Evolution in Particle Network Formation Studied by Brownian Dynamics Simulation
Authors:Hütter
Institution:ETH Zürich, Department of Materials, Institute of Polymers and Swiss Rheocenter, Zürich, CH-8092, Switzerland
Abstract:The effect of solid content and colloidal interactions on the structure of forming networks of colloidal particles is studied by Brownian dynamics simulation. The different situations are compared in terms of the pair distribution function and the distribution of nearest neighbors around each particle. The results indicate that, in fast coagulation, the higher solid contents lead to a freezing-in of the liquid structure. Nevertheless, this effect can be reduced substantially by the introduction of a shallow secondary minimum and an energy barrier in the interaction potential. However, the structures resulting from such slow coagulation show a substantial degree of porosity, larger than those produced at the same solid content but by fast coagulation. It is also shown how the porosity (defined on a few particle diameters) is reflected in the distribution of nearest neighbors around the center particle, i.e., the very local conformation in the particle network. Fractal analysis shows that, at the relatively high volume fractions considered in this study, no intermediate fractal regime exists. Copyright 2000 Academic Press.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号