首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fast-atom bombardment of the cyclic acetals: Evidence indicating the predominant involvement of condensed-phase processes in ionization
Authors:Gary J C Paul  Serge Bourg  Michel J Bertrand
Institution:1. Regional Center for Mass Spectrometry, Department of Chemistry, University of Montreal, Station A, P. O. Box 6128, H3C 3J7, Montreal, Canada
Abstract:A series of cyclic acetals, the 2-phenyl-l,3 dioxolanes, and their deuterated analogues were studied by electron ionization (EI), chemical ionization (CI), and fast-atom bombardment (FAB) mass spectrometry to gain insight into the primary ionization processes for these compounds in FAB/liquid secondary ion mass spectrometry. Comparison of EI and CI data with that of FAB led to the conclusion that the predominant M - H]+ ion observed in FAB for the nondeuterated cyclic acetals cannot to a large extent be rationalized in thermodynamic terms by known gas-phase ion-molecule reactions. Instead, a condensed-phase model in which the multicharged transition state for hydride abstraction is better solvated than the transition state for proton transfer appears to be a plausible explanation for the FAB data obtained for the nonlabeled cyclic acetals; however, this explanation is not entirely sufficient to rationalize the FAB data for the deuterated cyclic acetals. For these compounds, a dramatic time dependence of protonation versus hydride abstraction is observed that suggests that beam-induced reactive species are responsible for hydride abstraction in the condensed phase. This time dependence can be interpreted in terms of a buildup of highly reactive beam-induced species in the bulk of solution. Comparison of the results obtained for deuterated acetals with different surface activities support this hypothesis. (J Am Sot Mass
Keywords:
本文献已被 ScienceDirect SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号