首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sonochemical Reaction of Bifunctional Molecules on Silicon (111) Hydride Surface
Authors:Serge Ismael Zida  Yue-Der Lin  Yit Lung Khung
Institution:1.Ph.D. Program of Electrical and Communications Engineering, College of Information and Electrical Engineering, Feng Chia University, No.100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan; (S.I.Z.); (Y.D.L.);2.Department of Automatic Control Engineering, Feng Chia University, No.100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan;3.Department of Biological Science and Technology, China Medical University, No.100 Jingmao 1st Road, Beitun District, Taichung City 406, Taiwan
Abstract:While the sonochemical grafting of molecules on silicon hydride surface to form stable Si–C bond via hydrosilylation has been previously described, the susceptibility towards nucleophilic functional groups during the sonochemical reaction process remains unclear. In this work, a competitive study between a well-established thermal reaction and sonochemical reaction of nucleophilic molecules (cyclopropylamine and 3-Butyn-1-ol) was performed on p-type silicon hydride (111) surfaces. The nature of surface grafting from these reactions was examined through contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cyclopropylamine, being a sensitive radical clock, did not experience any ring-opening events. This suggested that either the Si–H may not have undergone homolysis as reported previously under sonochemical reaction or that the interaction to the surface hydride via a lone-pair electron coordination bond was reversible during the process. On the other hand, silicon back-bond breakage and subsequent surface roughening were observed for 3-Butyn-1-ol at high-temperature grafting (≈150 °C). Interestingly, the sonochemical reaction did not produce appreciable topographical changes to surfaces at the nano scale and the further XPS analysis may suggest Si–C formation. This indicated that while a sonochemical reaction may be indifferent towards nucleophilic groups, the surface was more reactive towards unsaturated carbons. To the best of the author’s knowledge, this is the first attempt at elucidating the underlying reactivity mechanisms of nucleophilic groups and unsaturated carbon bonds during sonochemical reaction of silicon hydride surfaces.
Keywords:sonochemical reaction  sonochemistry  acoustic cavitation  surface grafting  nucleophilic reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号