首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Activated Carbon/Pectin Composite Enterosorbent for Human Protection from Intoxication with Xenobiotics Pb(II) and Sodium Diclofenac
Authors:Jakpar Jandosov  Mo Alavijeh  Shynggyskhan Sultakhan  Alzhan Baimenov  Maria Bernardo  Zuriyadda Sakipova  Seytkhan Azat  Svitlana Lyubchyk  Nurzhamal Zhylybayeva  Gulmira Naurzbayeva  Zulkhair Mansurov  Sergey Mikhalovsky  Dmitriy Berillo
Abstract:The use of enterosorbents—materials which can be administered orally and eliminate toxic substances from the gastrointestinal tract (GIT) by sorption—offers an attractive complementary protection of humans against acute and chronic poisoning. In this study, we report the results of developing a microgranulated binary biomedical preparation for oral use. It was designed with a core-shell structure based on pectin with low degree of esterification as the core, and nanoporous activated carbon produced from rice husk, AC-RH, as the shell, designated as AC-RH@pectin. The adsorption properties of the synthesized materials were studied in aqueous solutions for the removal of lead (II) nitrate as a representative of toxic polyvalent metals and sodium diclofenac as an example of a medicinal drug. The composite enterosorbent demonstrated high adsorption capacity for both adsorbates studied. Adsorption kinetics of lead and diclofenac adsorption by AC-RH, pectin, and AC-RH@pectin, fitted well a pseudo-second-order model. According to the Langmuir adsorption isotherm model, the best fitted isotherm model, the maximum adsorption capacity, qmax, of AC-RH@pectin for diclofenac and for lead (II) was 130.9 mg/g and 227.8 mg/g, respectively. Although qmax of AC-RH for diclofenac, 537.6 mg/g, and qmax of pectin for lead (II), 245.7 mg/g, were higher, the maximum adsorption capacity of AC-RH for lead (II), 52.7 mg/g, was much lower than that of the composite AC-RH@pectin and the adsorption capacity of pectin for diclofenac was negligible. Therefore, the composite material AC-RH@pectin demonstrated substantial efficiency of removing both species which potentially defines it as a more universal enterosorbent suitable for treating poisoning caused by substances of different chemical nature.
Keywords:diclofenac adsorption  lead adsorption  enterosorbent  pectin  porous carbon
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号