首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomic distributions in the gamma-brass structure of the Cu-Zn system: a structural and theoretical study
Authors:Gourdon Olivier  Gout Delphine  Williams Darrick J  Proffen Thomas  Hobbs Sara  Miller Gordon J
Institution:Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA. gourdon@lanl.gov
Abstract:The crystal structures, atomic distributions, and theoretical electronic structures of five different Cu5-xZn8+x gamma-brass compounds (x = -0.59(3), -0.31(3), 0.00(3), 0.44(3), and 0.79(3)) are reported with the goal of identifying chemical influences on the observed phase width. These structures have been refined by both neutron and X-ray powder diffraction to obtain accurate crystal chemical parameters. All compounds crystallize in the space group Iz3m (No. 217) (Z = 4), and the unit cell parameters are a = 8.8565(4), 8.8612(5), 8.8664(3), 8.8745(4), and 8.8829(7) A, respectively, for Cu5.59Zn7.41, Cu5.31Zn7.69, Cu5.00Zn8.00, Cu4.56Zn8.44, and Cu4.21Zn8.79. The results indicate specific site substitutions on both sides of the ideal composition "Cu5Zn8". In all cases, the 26-atom cluster building up the -brass structure shows a constant inner Cu4Zn4] tetrahedral star with compositional variation occurring at the outer octahedron and cuboctahedron. First principles and semiempirical electronic structure calculations using both a COHP and Mulliken population analysis were performed to understand the observed compositional range and to address the "coloring problem" for the site preferences of Cu and Zn atoms for this series of compounds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号