首页 | 本学科首页   官方微博 | 高级检索  
     


New insights in the atmospheric HONO formation: new pathways for N2O4 isomerization and NO2 dimerization in the presence of water
Authors:de Jesus Medeiros Diogo  Pimentel Andre Silva
Affiliation:Departamento de Qui?mica, Pontifi?cia Universidade Cato?lica do Rio de Janeiro Rua Marque?s de Sa?o Vicente, 225 Ga?vea, Rio de Janeiro, RJ, Brazil 22453-900.
Abstract:Isomerization of N(2)O(4) and dimerization of NO(2) in thin water films on surfaces are believed to be key steps in the hydrolysis of NO(2), which generates HONO, a significant precursor to the OH free radical in lower atmosphere and high-energy materials. Born-Oppenheimer molecular dynamics simulations using the density functional theory are carried out for NO(2)(H(2)O)(m), m ≤ 4, and N(2)O(4)(H(2)O)(n) clusters, n ≤ 7, used to mimic the surface reaction, to investigate the mechanism around room temperature. The results are (i) the NO(2) dimerization and N(2)O(4) isomerization reactions occur via two possible pathways, the non-water-assisted and water-assisted mechanisms; (ii) the NO(2) dimerization in the presence of water yields either ONONO(2)(H(2)O)(m) or NO(3)(-)NO(+)(H(2)O)(m) clusters, but it is also possible to form the HNO(3)(NO(2)(-))(H(3)O(+))(H(2)O)(m-2) transition state to form HONO and HNO(3), directly; (iii) the N(2)O(4) isomerization yields the NO(3)(-)NO(+)(H(2)O)(n) cluster, but it does not hydrolyze faster than the NO(2)(+)NO(2)(-)(H(2)O)(n) hydrolysis to directly form the HONO and HNO(3). New insights for hydrolysis of oxides of nitrogen in and on thin water films on surfaces in the atmosphere are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号