首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Novel bare-bones particle swarm optimization and its performance for modeling vapor-liquid equilibrium data
Authors:Haibo ZhangDevid Desfreed Kennedy  Gade Pandu Rangaiah  Adrián Bonilla-Petriciolet
Institution:a Department of Chemical and Biomolecular Engineering, Engineering Drive 4, National University of Singapore, Singapore 117576, Singapore
b Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, México 20256, Mexico
Abstract:Parameter estimation in models plays a significant role in developing mathematical models which are used for understanding and analyzing physical, chemical and biological systems. Parameter estimation problems for vapor-liquid equilibrium (VLE) data modeling are very challenging due to the high non-linearity of thermodynamic models. Recently, stochastic global optimizations and their applications to these problems have attracted greater interest. Of the many stochastic global optimization methods, Bare-bones particle swarm optimization (BBPSO) is attractive since it has no parameters to be tuned by the user. In this study, modifications are introduced to the original BBPSO using mutation and crossover operators of differential evolution algorithm to update certain particles in the population. The performance of the resulting algorithm is tested on 10 benchmark functions and applied to 16 VLE problems. The performance of the proposed BBPSO for VLE modeling is compared with that of other stochastic algorithms, namely, differential evolution (DE), DE with tabu list, genetic algorithm and simulated annealing in order to identify their relative strengths for VLE data modeling. The proposed BBPSO is shown to be better than or comparable to the other stochastic global optimization algorithms tested for parameter estimation in modeling VLE data.
Keywords:Global optimization  Particle swarm optimization  Bare-bones PSO  Vapor-liquid equilibrium modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号