Nickel pyrazolyl borate complexes: Synthesis, structure and analytical application in biological and environmental samples as anion selective sensors |
| |
Authors: | Ashok K. Singh Vaibhave Aggarwal Udai P. Singh Sameena Mehtab |
| |
Affiliation: | Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India |
| |
Abstract: | A [{hydrotris(3-phenyl-5-methyl-1-pyrazolyl)borate}(3-phenyl-5-methyl-pyrazole) nickel chloride] [TpPh,MeNi(Cl)PzPh,MeH] (I) has been synthesized and explored as ionophores for the preparation of a poly (vinyl chloride) (PVC) membrane sensor for azide and thiocyanate anions. The compounds [TpPh,MeNi(N3)PzPh,MeH] (II) and [TpPh,MeNi(SCN)PzPh,MeH] (III) were characterized by their crystal structures and proved to be bonded as monodentate through nitrogen atom of azide and thiocyanate anion. Potentiometric investigations also indicate high affinity of this receptor for thiocyanate and azide ions. PVC based membranes of I using as hexadecyltrimethylammonium bromide (HTAB) cation discriminator and o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), acetophenone (AP) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as SCN− and N3− selective sensors. The best performance was shown by the membrane of thiocyanate with composition (w/w) of (I) (7%):PVC (31%):DBP (60%):HTAB (2%). This sensor works well over a wide concentration range 5.3 × 10−7 to 1.0 × 10−2 M with Nernstian compliance (59.2 mV decade−1 of activity) within pH range 2.5-9.0 with a response time of 11 s and showed good selectivity for thiocyanate ion over a number of anions. The sensor exhibits adequate life (3 months) and could be used successfully for the determination of thiocyanate content in human urine, saliva and river water samples. While the membrane of [TpPh,MeNi(Cl)PzPh,MeH] ionophore with composition (I) (6%):HTAB (4%):PVC (31%):TBP (59%) showed highest sensitivity and widest linear range for azide ion. These sensors exhibit the maximum working concentration range of 8.1 × 10−6 to 1.0 × 10−2 M with Nernstian slope of 59.3 mV decade−1 of activity. It can be applied for the monitoring of the azide ions concentration in aqueous black tea and orange juice samples. |
| |
Keywords: | PVC membrane Ion selective membrane sensors Pyrazolylborate nickel complexes |
本文献已被 ScienceDirect 等数据库收录! |
|