首页 | 本学科首页   官方微博 | 高级检索  
     


Hysteresis loops predicted by isoenergy density theory for polycrystals. Part I: fundamentals of non-equilibrium thermal–mechanical coupling effects
Authors:G. C. Sih   D. Y. Jeong
Affiliation:a Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem PA 18017, USA;b School of Mechanical Engineering, East China University of Science and Technology, Mail Box 295, 130 Melong St., Shanghai 200237, China;c US Department of Transportation, Research and Special Programs Administration, Volpe National Transportation Systems Center, Cambridge, MA 02142, USA
Abstract:When a polycrystal is stressed or strained at fifty percent of the corresponding yield value, damage will be inflicted non-homogeneously in the material due to the fact that the stress and/or strain distribution is non-uniform even if isotropy and homogeneity are assumed for the initial microstructure. This effect will be cumulated for each cycle of the load if the applied stress or strain is repeated continuously. Nucleation of microcracks can eventually lead to the propagation of a macrocrack.The process of damage accumulation in fatigue is defined to be sufficiently slow such that inhomogeneity of material behavior created by loading is a significant factor that can not be arbitrarily dismissed without a good reason. What this means specifically is that the difference of the stress and strain behavior at each point in a fatigue specimen must be accounted for in the analytical model in order to predict the correct cumulative effect. Such a requirement translates into a non-equilibrium formulation where the constitutive relations for each point and loading cycle must be determined separately. In this sense, the true problem of fatigue cannot be completely treated by the classical continuum mechanics approach that is limited to equilibrium mechanics for a closed system. Having said this, the isoenergy density theory will be applied to estimate the hysteresis loops of a hour-glass profile cylindrical bar specimen as recommended by the American Society for Testing and Materials (ASTM) for low-cycle fatigue.The work will be divided into two parts. Part I will cover the fundamentals of a non-equilibrium theory where the continuum elements are finite in size; they do not vanish in the limit. Therefore, size effects are immediately encountered as a function of time. General expressions for the rate change of volume of these elements with surface area are derived such that they can be computed from the nine displacement gradients. These elements can differ in size and must fit together without discontinuities or gaps to form the continuum. The condition of isoenergy energy density is invoked such that the size of these individual elements under large and finite deformation and rotation can be determined without loss in generality. The existence of such a space having the property of the same isoenergy density in all directions is thus proved. This enables the establishment of the one dimensional energy state with that in three dimensions without restriction, the absence of which has prevented the development of a complete non-linear theory of mechanics that can be solved in a direct fashion in contrast to the inverse method of assuming the displacement field. Illustration is provided for deriving the constitutive relation incrementally for a given location for the hour-glass specimen made of 6061-T6 aluminum. Once the specimen is loaded, each material point will follow a different stress and strain curve according to the local displacement rate. Hence, the method applies to material with non-homogeneous microstructure if their individual expressions can be assessed and fed into the computer.Part II computes for the non-equilibrium temperature and an entropy-like quantity that can be positive and negative. This implies that the system can absorb or dissipate energy with reference to the surrounding. Additional data for hysteresis loops are given for 6061-T6 aluminum, SAE 4340 steel and Ti–8Al–1Mo–1V titanium. Accumulation of the local hysteresis energy per cycle is found to be the highest near the surface of the uniaxial specimen where load symmetry prevails. This is a consequence of the difference in accumulation of the energy density due to distortion in contrast to dilatation at the specimen center. This is why fatigue cracks tend to nucleate near the specimen surface, at a small distance towards the interior. Another distinct feature of fatigue is that the non-equilibrium temperature is found to oscillate about the ambient temperature while the local stress states fluctuate between tension and compression. This temperature reversal behavior is typical of non-equilibrium behavior and also occurs under monotonic loading. The space and time variations of the dissipated energy density for different materials are found to be related to the initial monotonic energy density or area under the true stress and true strain curve.What will be demonstrated is that no special consideration need to be made when applying the isoenergy density theory for analyzing the nucleation of micro and macrocracks in addition to failure of the specimen. Crack nucleation under fatigue is assumed to occur when the total hysteresis energy reaches a critical value. It is possible to establish a relation between the average hysteresis energy per cycle and the number of cycles to failure. The proposed method requires only a knowledge of the initial monotonic energy density curve for a given material. Predicted results for the fatigue of cylindrical bar specimens with hour-glass profile are given and they can be found in Part II of this work.
Keywords:Author Keywords: Material inhomogeneity   Accumulation of distortional energy density   Isoenergy density elements and theory   Non-vanishing volume to surface area ratio   Cooling and heating behavior of temperature   Fatigue crack nucleation from specimen surface
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号