首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorogenic peptide sequences--transformation of short peptides into fluorophores under ambient photooxidative conditions
Authors:Juskowiak Gary L  Stachel Shawn J  Tivitmahaisoon Parcharee  Van Vranken David L
Institution:Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
Abstract:Long-lived proteins are susceptible to nonenzymatic chemical reactions and the evolution of fluorescence; however, little is known about the sequence-dependence of fluorogenesis. We synthesized a library of over half a million octapeptides and exposed it to light and air in pH 7.4 buffer to identify fluorogenic peptides that evolve under mild oxidative conditions. The bead-based peptide library was composed of the general sequence H(2)N-Ala-(Xxx)(6)-Ala-resin, where Xxx was one of nine representative amino acids: Asp, Gly, His, Leu, Lys, Pro, Ser, Trp, and Tyr. Next, we selected five highly fluorescent beads from the library and subjected them to microsequencing, revealing the sequence of the unreacted peptide. All five of the fluorogenic sequences were ionic; lacked Tyr, His, and Leu; and most of the sequences contained only one Trp. We then synthesized the five soluble peptides corresponding to the fluorogenic peptide sequences and exposed them to photooxidative conditions. In general, the soluble peptides reacted slowly, generating nonfluorescent monooxygenated and dioxygenated products. However, one peptide (H(2)N-AlaLysProTrpGlyGlyAspAla-CONH(2)) evolved into a highly fluorescent photoproduct as well as a nonfluorescent monooxygenated photoproduct. The fluorescent photoproduct consisted of a 2-carboxy-quinolin-4-yl moiety fused to the N-terminus of GlyGlyAspAla. The formation of this photoproduct requires cleavage of the peptide backbone and a dramatic reorganization of tryptophan. This work demonstrates that sequencing unreacted peptide on beads can reveal sequences with unique nonenzymatic reactivity. The study also confirms that peptide fluorogenesis is dependent on sequence and not merely on the presence of tryptophan. The potential importance of fluorogenic peptide sequences is two-fold. First, fluorogenic sequences that arise through mutation could prove to be hot spots for human aging. Second, fluorogenic sequences, particularly those compatible with intracellular conditions, may serve as fluorescent tags for proteins or as fluorescent biomaterials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号