首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comprehensive density functional theory study on serine and related ions in gas phase: conformations, gas phase basicities, and acidities
Authors:Miao Ren  Jin Chen  Yang Gaosheng  Hong Jin  Zhao Chunmei  Zhu Longgen
Institution:State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093, P. R. China.
Abstract:Density functional theory (DFT) calculations have been performed to investigate the gas-phase conformations of serine and its three related ions (serineH(+), serine(-), and serine(2-)). The full ensemble of possible conformations, 324 conformations for serine, 108 for serineH(+), 162 for serine(-) and 54 for serine(2-), were first surveyed at B3LYP/6-31G level, and then the obtained unique conformations were further refined at B3LYP/6-311+G level. From full optimizations, 74 unique conformations for seine, 14 for serineH(+), 11 for serine(-), and 4 for serine(2-) were located, and their relative energies were also determined at B3LYP/6-311+G level. Atoms in molecules (AIM) analysis was carried out to establish rigorous definition of hydrogen bonds. Six types of intramolecular H-bonds in conformers of serine, six types in serineH(+), three types in serine(-), and two types in serine(2-) were identified within the framework of AIM theory and their relative strengths were determined based on topological properties at bond critical points (BCPs) of H-bonds. The intramolecular H-bonds were demonstrated to play an important role in deciding the relative stability of conformations of amino acids and the related ions. The enthalpies and Gibbs free energies of protonation and deprotonation reactions of serine and its related ions were calculated at B3LYP/6-311+G//B3LYP/6-31G, and B3LYP/6-311+G//B3LYP/6-311+G level. The calculated results are both in excellent agreement with the experimental data. We demonstrate in this study that B3LYP is an efficient and accurate method to predict the thermochemical and structural parameters of amino acids and the related ions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号