首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics and mechanisms of S(IV) reductions of bromite and chlorite ions
Authors:Huff Hartz Kara E  Nicoson Jeffrey S  Wang Lu  Margerum Dale W
Affiliation:Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.
Abstract:The reaction of bromite with aqueous S(IV) is first order in both reactants and is general-acid catalyzed. The reaction half-lives vary from 5 ms (p[H+] 5.9) to 210 s (p[H+] 13.1) for 0.7 mM excess S(IV) at 25 degrees C. The proposed mechanism includes a rapid reaction (k(1) = 3.0 x 10(7) M(-1) s(-1)) between BrO(2)(-) and SO(3)(2-) to form a steady-state intermediate, (O(2)BrSO(3))(3-). General acids assist the removal of an oxide ion from (O(2)BrSO(3))(3-) to form OBrSO(3)(-), which hydrolyzes rapidly to give OBr(-) and SO(4)(2-). Subsequent fast reactions between HOBr/OBr(-) and SO(3)(2-) give Br(-) and SO(4)(2-) as final products. In contrast, the chlorite reactions with S(IV) are 5-6 orders of magnitude slower. These reactions are specific-acid, not general-acid, catalyzed. In the proposed mechanism, ClO(2)(-) and SO(3)H(-)/SO(2) react to form (OClOSO(3)H)(2)(-) and (OClOSO(2))(-) intermediates which decompose to form OCl(-) and SO(4)(2-). Subsequent fast reactions between HOCl/OCl(-) and S(IV) give Cl- and SO(4)(2-) as final products. SO(2) is 6 orders of magnitude more reactive than SO(3)H-, where k(5)(SO(2)/ClO(2)(-)) = 6.26 x 10(6) M(-1) s(-1) and k(6)(SO(3)H(-)/ClO(2)(-)) = 5.5 M(-1) s(-1). Direct reaction between ClO(2)(-) and SO(3)(2-) is not observed. The presence or absence of general-acid catalysis leads to the proposal of different connectivities for the initial reactive intermediates, where a Br-S bond forms with BrO(2)(-) and SO(3)(2-), while an O-S bond forms with ClO(2)(-) and SO(3)H-.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号