首页 | 本学科首页   官方微博 | 高级检索  
     


On sample size control in sample average approximations for solving smooth stochastic programs
Authors:Johannes O. Royset
Affiliation:1. Operations Research Department, Naval Postgraduate School, Monterey, CA, USA
Abstract:We consider smooth stochastic programs and develop a discrete-time optimal-control problem for adaptively selecting sample sizes in a class of algorithms based on variable sample average approximations (VSAA). The control problem aims to minimize the expected computational cost to obtain a near-optimal solution of a stochastic program and is solved approximately using dynamic programming. The optimal-control problem depends on unknown parameters such as rate of convergence, computational cost per iteration, and sampling error. Hence, we implement the approach within a receding-horizon framework where parameters are estimated and the optimal-control problem is solved repeatedly during the calculations of a VSAA algorithm. The resulting sample-size selection policy consistently produces near-optimal solutions in short computing times as compared to other plausible policies in several numerical examples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号