首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coordination chemistry of a new rigid, hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand
Authors:Bleiholder Christian  Börzel Heidi  Comba Peter  Ferrari Rosana  Heydt Matthias  Kerscher Marion  Kuwata Shigemasa  Laurenczy Gabor  Lawrance Geoffrey A  Lienke Achim  Martin Bodo  Merz Michael  Nuber Bernd  Pritzkow Hans
Institution:Universit?t Heidelberg, Anorganisch-Chemisches Institut, Germany.
Abstract:The hexadentate bispidine-based ligand 2,4-bis(2-pyridyl)-3,7-bis(2-methylenepyridine)-3,7-diazabicyclo3.3.1]nonane-9-on-1,5-bis(carbonic acid methyl ester), L(6m), with four pyridine and two tertiary amine donors, based on a very rigid diazaadamantane-derived backbone, is coordinated to a range of metal ions. On the basis of experimental and computed structural data, the ligand is predicted to form very stable complexes. Force field calculations indicate that short metal-donor distances lead to a buildup of strain in the ligand; that is, the coordination of large metal ions is preferred. This is confirmed by experimentally determined stability constants, which indicate that, in general, stabilities comparable to those with macrocyclic ligands are obtained with the relative order Cu(2+) > Zn(2+) > Ni(2+) < Co(2+), which is not the typical Irving-Williams behavior. The preference for large M-N distances also emerges from relatively high redox potentials (the higher oxidation states, that is, the smaller metal ions, are destabilized) and from relatively weak ligand fields (dd-transition, high-spin electronic ground states). The potentiometric titrations confirm the efficient encapsulation of the metal ions since only 1:1 complexes are observed, and, over a large pH range, ML is generally the only species present in solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号