首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The 1deltag dioxygen ene reaction with propene: a density functional and multireference perturbation theory mechanistic study
Authors:Maranzana Andrea  Ghigo Giovanni  Tonachini Glauco
Institution:Dipartimento di Chimica Generale e Organica Applicata, Università di Torino, Corso Massimo D'Azeglio 48, 10125 Torino, Italy.
Abstract:This study aims to determine whether a balance between concerted and non-concerted pathways exists, and in particular to ascertain the possible role of diradical/zwitterion or peroxirane intermediates. Three non-concerted pathways, via 1) diradical or 2) peroxirane intermediates, and 3) by means of hydrogen-abstraction/radical recoupling, plus one concerted pathway (4), are explored. The intermediates and transition structures (TS) are optimized at the DFT(MPW1K), DFT(B3LYP) and CASSCF levels of theory. The latter optimizations are followed by multireference perturbative CASPT2 energy calculations. (1) The polar diradical forms from the separate reactants by surmounting a barrier (deltaE(++)(MPW1K)=12, deltaE++(B3LYP)=14, and deltaE(++)(CASPT2)=16 kcal mol(-1) and can back-dissociate through the same TS, with barriers of 11 (MPW1K) and 8 kcal mol(-1) (B3LYP and CASPT2). The diradical to hydroperoxide transformation is easy at all levels (deltaE(++)(MPW1K)<4, deltaE(++)(B3LYP)=1 and deltaE(++)(CASPT2)=1 kcal mol(-1)). (2) Peroxirane is attainable only by passing through the diradical intermediate, and not directly, due to the nature of the critical points involved. It is located higher in energy than the diradical by 12 kcal mol(-1), at all theory levels. The energy barrier for the diradical to cis-peroxirane transformation (deltaE(++)=14-16 kcal mol(-1)) is much higher than that for the diradical transformation to the hydroperoxide. In addition, peroxirane can very easily back-transform to the diradical (deltaE(++)<3 kcal mol(-1)). Not only the energetics, but also the qualitative features of the energy hypersurface, prevent a pathway connecting the peroxirane to the hydroperoxide at all levels of theory. (3) The last two-step pathway (hydrogen-abstraction by (1)O(2), followed by HOO-allyl radical coupling) is not competitive with the diradical mechanism. (4) A concerted pathway is carefully investigated, and deemed an artifact of restricted DFT calculations. Finally, the possible ene/pi2+pi2] competition is discussed.
Keywords:ab initio calculations  density functional calculations  ene reaction  reaction mechanisms  singlet oxygen
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号