首页 | 本学科首页   官方微博 | 高级检索  
     


Multiscale analysis for diffusion-driven neutrally stable states
Authors:M. Rodriguez-Ricard  R.P. Mondaini  
Affiliation:aDepartment of Mathematics, Havana University, C. Habana 10400, Cuba;bFederal University of Rio de Janeiro, COPPE-Centre of Technology/BIOMAT Consortium 21.941-972 - P.O. Box 68.511, Rio de Janeiro - RJ, Brazil
Abstract:The Turing instabilities for reaction–diffusion systems are studied from the Fourier normal modes which appear by searching the solution obtained from linearization of the reaction–diffusion system at the spatially homogeneous steady state. The linear stability analysis is only appropriate when the temporal eigenvalues associated to every given spatial eigenvalue have non-zero real part. If the real part of the temporal eigenvalue in a normal mode is equal to zero there is no enough information coming from the linearized system. Given an arbitrary spatial eigenvalue, by equating to zero the real part of the corresponding temporal eigenvalue will lead to a neutral stability manifold in the parameter space. If for a given spatial eigenvalue the other parameters in the reaction–diffusion process drive the system to the neutral manifold, then neither stability nor instability can be warranted by the usual linear analysis. In order to give a sketch of the nonlinear analysis we use a multiple scales method. As an application, we analyze the behavior of solutions to the Schnakenberg trimolecular reaction kinetics in the presence of diffusion.
Keywords:Turing instabilities   Reaction–  diffusion   Multiple scales   Neutral stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号