首页 | 本学科首页   官方微博 | 高级检索  
     检索      

金属Cu液固转变及晶体生长的分子动力学模拟
引用本文:王丽,边秀房,李辉.金属Cu液固转变及晶体生长的分子动力学模拟[J].物理化学学报,2000,16(9):825-829.
作者姓名:王丽  边秀房  李辉
作者单位:Institute of Material Science and Engineering,Shandong University of Technology,Jinan 250061
基金项目:山东省自然科学基金资助项目(Z99F01)
摘    要:采用分子动力学模拟研究了液态Cu在不同冷却速度下的凝固特点,模拟采用EAM作用势,计算了不同温度,不同冷却速度下Cu的偶相关函数,结果表明EAM作用势能很好地描述液态Cu的结构特征,当冷却速度较快时,液Cu形成非晶;当冷却速度较慢时,液Cu形成晶体,分析了不同冷却速度下体系的相变热力学及相变动力学过程,最后采用液固两层构型法,描述了Cu晶体的生长过程。

关 键 词:分子动力学模拟  EAM作用势  偶相关函数  相变热力学  相变动力学  晶体生长  
收稿时间:1999-11-24
修稿时间:1999年11月24

Liquid-Solid Transition and Crystal Growth of Metal Cu by Molecular Dynamics Simulation
Wang Li Bian Xiufang Li Hui.Liquid-Solid Transition and Crystal Growth of Metal Cu by Molecular Dynamics Simulation[J].Acta Physico-Chimica Sinica,2000,16(9):825-829.
Authors:Wang Li Bian Xiufang Li Hui
Institution:Institute of Material Science and Engineering,Shandong University of Technology,Jinan 250061
Abstract:The solidification process of Cu melts has been performed at constant temperature and constant pressure by mean of molecular dynamic simulation technique. EAM(embedded- atom method) potential functions have been adopted to describe the atomic interaction. The pair correlation functions of liquid Cu at different cooling rate and temperature have been used to reveal the structural features of liquid, super- cooled liquid, glass state and crystal. The results indicate that the EAM potential function can well describe liquid- solid transition of Cu,the Cu melts become the glass state during relatively high cooling rate;and crystallize out during relatively low cooling rate.The structure transition of Cu in the cooling process has been analyzed through thermodynamics and kinetics. And the crystal growth of Cu has been observed by using crystal- liquid configuration method.
Keywords:Molecular dynamics simulation  EAM potential function  Pair correlation  function  Thermodynamics  Kinetics  Crystal growth
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号