摘 要: | 提出了一种蒙特卡洛-偏最小二乘回归系数法用于近红外光谱的变量筛选。方法主要包含如下几步:(1)采用蒙特卡洛采样方式,建立多个子集;(2)对每个子集建模,计算其回归系数,并按回归系数绝对值大小对各子模型中的变量进行排序;(3)按频数统计方法对波长排序;(4)对上步中排序后的波长以逐步累加进入最佳变量子集的方式进行交互验证,用以选择最佳变量集。将方法用于生物样品溶液和烟草样品近红外光谱的变量筛选,最终分别从原始的1234及1557个变量中选择了27和68个特征变量,对独立测试集进行预测的RMSEP分别从全谱变量的0.02716和0.06411降低为0.02372和0.03977。方法可有效地对近红外光谱进行变量筛选。
|