首页 | 本学科首页   官方微博 | 高级检索  
     


Particle discriminator interface for nanoflow ESI-MS
Authors:Bradley B. Schneider  Vladimir I. Baranov  Hassan Javaheri  Thomas R. Covey
Affiliation:MDS SCIEX, Concord, Ontario, Canada. bradley.schneider@sciex.com
Abstract:An atmosphere to vacuum interface was designed to exploit the different mobility and momentum characteristics of ions, and charged and neutral particles in electrospray ionization-mass spectrometry. The purpose of this device is to transmit with high efficiency the ions created at atmospheric pressure into the mass analyzer and to deflect the large charged and neutral particles prior to entrance into the vacuum system, thereby maintaining system cleanliness and stability. This interface is particularly suitable for low flow rate electrospray ionization-mass spectrometry where the close proximity of the electrospray emitters to the vacuum entrance, and near total consumption of the entire spray, leads to the production of large quantities of non-desolvated droplets and large charged and neutral particles. The improvement involves the application of potential gradients to a particle discriminator space located between the gas restricting ion entrance orifice of the mass spectrometer and the exit of a heated laminar flow chamber to divert large particles from the gas conductance limiting orifice. A counter-current flow of drying gas is used to deflect neutral particles and solvent vapor. Two stages of desolvation are achieved with the combined effects of the curtain gas and heated laminar flow chamber. This enhances the efficiency of desolvation and ion production, and stabilizes the resulting ion current under a wide variety of solvent compositions. In addition, this system eliminates the problems associated with the boiling of solution in nanospray tips when operated in close proximity to a heated mass spectrometer inlet. The particle discriminator interface gives approximately a 2-fold improvement in ion count rates, and a 3-fold improvement in stability (as measured by the signal relative standard deviation).
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号