首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orthogonal Polynomials on the Unit Circle with Fibonacci Verblunsky Coefficients, II. Applications
Authors:David Damanik  Paul Munger  William N Yessen
Institution:1. Department of Mathematics, Rice University, Houston, TX, 77005, USA
2. Department of Mathematics, University of California, Irvine, CA, 92697, USA
Abstract:We consider CMV matrices with Verblunsky coefficients determined in an appropriate way by the Fibonacci sequence and present two applications of the spectral theory of such matrices to problems in mathematical physics. In our first application we estimate the spreading rates of quantum walks on the line with time-independent coins following the Fibonacci sequence. The estimates we obtain are explicit in terms of the parameters of the system. In our second application, we establish a connection between the classical nearest neighbor Ising model on the one-dimensional lattice in the complex magnetic field regime, and CMV operators. In particular, given a sequence of nearest-neighbor interaction couplings, we construct a sequence of Verblunsky coefficients, such that the support of the Lee-Yang zeros of the partition function for the Ising model in the thermodynamic limit coincides with the essential spectrum of the CMV matrix with the constructed Verblunsky coefficients. Under certain technical conditions, we also show that the zeros distribution measure coincides with the density of states measure for the CMV matrix.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号