首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of pressure on gas permeability coefficients. A new application of “free volume” theory
Authors:S A Stern  S-M Fang  H L Frisch
Abstract:The present work is a continuation of a general study of the effect of pressure on gas and vapor permeation through nonporous polymeric membranes. Permeability coefficients have been measured for 1,1-difluoroethylene (C2H2F2) and fluoroform (CHF3) in polyethylene at penetrant pressures up to 35 atm and at temperatures between -18 and 70°C. The permeability coefficient P? for the 1,1-difluoroethylene—polyethylene system was found to increase with increasing pressure differential Δp across the membrane. Isothermal plots of log ΔP versus Δp are generally linear and can be represented by empirical relations of the form ΔP = P(0)exp{m Δp}, where P(0) and m are constants. The slope m of these isotherms decreases with increasing temperature. Plots of log P? versus Δp for the fluoroform—polyethylene system are also linear, but exhibit negative slopes, i.e., P? decreases with increasing Δp. An extension of Fujita's “free volume” theory of diffusion in polymers shows that the dependence of P? on pressure reflects how the free volume of the polymer is affected by this pressure. An increase in the penetrant pressure may result in two opposing effects: (a) the concentration of the penetrant dissolved in the membrane is increased, thereby increasing the free volume, and (b) the hydrostatic pressure on the membrane is also increased, which causes a decrease in the free volume. If the overall effect is an increase in the free volume of the polymer, then P? will also increase, and vice versa.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号