Compression and denoising using l0-norm |
| |
Authors: | Andy C. Yau Xuecheng Tai Michael K. Ng |
| |
Affiliation: | (1) Department of Mathematics, University of Bologna, Piazza Porta San Donato, 5, 40126 Bologna, Italy |
| |
Abstract: | In this paper, we deal with l 0-norm data fitting and total variation regularization for image compression and denoising. The l 0-norm data fitting is used for measuring the number of non-zero wavelet coefficients to be employed to represent an image. The regularization term given by the total variation is to recover image edges. Due to intensive numerical computation of using l 0-norm, it is usually approximated by other functions such as the l 1-norm in many image processing applications. The main goal of this paper is to develop a fast and effective algorithm to solve the l 0-norm data fitting and total variation minimization problem. Our idea is to apply an alternating minimization technique to solve this problem, and employ a graph-cuts algorithm to solve the subproblem related to the total variation minimization. Numerical examples in image compression and denoising are given to demonstrate the effectiveness of the proposed algorithm. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|