首页 | 本学科首页   官方微博 | 高级检索  
     


Origins of enantioselectivity in the chiral diphosphine-ligated CuH-catalyzed asymmetric hydrosilylation of ketones
Authors:Zhang Wei  Li Weiyi  Qin Song
Affiliation:Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
Abstract:Computational investigations on the asymmetric hydrosilylation of acetophenone over ligated CuH catalysts were performed with the DFT method. The calculations predict that the catalytic reaction involves two steps: (1) CuH addition to the carbonyl group via a four-membered transition state (TS) with the formation of copper-alkoxide intermediates; (2) regeneration of the ligated CuH catalyst by an external SiH(4) through a metathesis process to yield the corresponding silyl ether. The calculations in the chiral diphosphine-ligated CuH systems suggest that the metathesis process is the rate-determining step (RDS). The CuH addition step is vital for the distribution of the racemic products and therefore represents the stereo-controlling step (SCT). In this step, the greater steric hindrance between the aromatic rings of the ligands and the substrate is identified as the major factor for enantioselectivity. The corresponding TS in the face-to-face mode, suffering less steric hindrance, is more stable than its analogue in the edge-to-face mode. The enantioselectivities are calculated to be related not only to the P-Cu-P bite angles in the stereo-controlling TSs, but also to the substituents at the P-aryl rings of the chiral ligands. In short, a larger P-Cu-P bite angle and suitably modified P-aryl rings together are necessary to achieve excellent ee values.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号