首页 | 本学科首页   官方微博 | 高级检索  
     检索      


One Electron Atom in Special Relativity with de Sitter Space-Time Symmetry
Authors:YAN Mu-Lin
Institution:Interdisciplinary Center for Theoretical Study, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ΛCDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me,h,e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ e2/(hc) keeps to be invariant; (ii) (2s1/2-2p1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting Δ E(z) are calculated analytically, which belongs to O(1/R2)-physics of dS-SR QM. Numerically, we find that when |R|~{103Gly, 104Gly, 105Gly}, and z~{1,or 2}, the Δ E(z)>>1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.
Keywords:hydrogen atom  special relativity with de sitter space-time symmetry  time variation of physical constants  Lamb shift  time dependent Hamiltonian in quantum mechanics  Friedmann--Robertson--Walker (FRW) universe  
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号