首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Near 0 eV electrons attach to nucleotides
Authors:Gu Jiande  Xie Yaoming  Schaefer Henry F
Institution:Drug Design & Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, CAS, PR China. hfs@uga.edu
Abstract:To elucidate the mechanism of the nascent stage of DNA strand breakage by low-energy electrons, theoretical investigations of electron attachment to nucleotides have been performed by the reliably calibrated B3LYP/DZP++ approach (Chem. Rev. 2002, 102, 231). The 2'-deoxycytidine-3'-monophosphate (3'-dCMPH) and its phosphate-deprotonated anion (3'-dCMP(-)) have been selected herein as models. This investigation reveals that 3'-dCMPH is able to capture near 0 eV electrons to form a radical anion which has a lower energy than the corresponding neutral species in both the gas phase and aqueous solution. The excess electron density is primarily located on the base of the nucleotide radical anion. The electron detachment energy of this pyrimidine-based radical anion is high enough that subsequent phosphate-sugar C-O sigma bond breaking or glycosidic bond cleavage is feasible. Although the phosphate-centered radical anion of 3'-dCMPH is not stable in the gas phase, it may be stable in aqueous solution. However, an incident electron with kinetic energy less than 4 eV might not be able to effectively produce the phosphate-centered radical anion either in solution or in the gas phase. This research also suggests that the electron affinity of the nucleotides is independent of the counterion in aqueous solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号