首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Double stable isotope ultra performance liquid chromatographic-tandem mass spectrometric quantification of tissue content and activity of phenylethanolamine N-methyltransferase, the crucial enzyme responsible for synthesis of epinephrine
Authors:Nan Qin  Mirko Peitzsch  Mario Menschikowski  Gabriele Siegert  Karel Pacak  Graeme Eisenhofer
Institution:1. Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Fetscherstr 74, 01307, Dresden, Germany
2. Program in Reproducitive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
3. Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III, University Hospital Dresden, Fetscherstr 74, 01307, Dresden, Germany
Abstract:Here, we describe a novel method utilizing double stable isotope ultra performance liquid chromatography-tandem mass spectrometry to measure tissue contents and activity of phenylethanolamine N-methyltransferase (PNMT), the enzyme responsible for synthesis of the stress hormone, epinephrine. The method is based on measurement of deuterium-labeled epinephrine produced from the reaction of norepinephrine with deuterium-labeled S-adenosyl-l-methionine as the methyl donor. In addition to enzyme activity, the method allows for determination of tissue contents of PNMT using human recombinant enzyme for calibration. The calibration curve for epinephrine was linear over the range of 0.1 to 5,000 pM, with 0.5 pM epinephrine representing the lower limit of quantification. The calibration curve relating PNMT to production of deuterium-labeled epinephrine was also linear from 0.01 to 100 ng PNMT. Intra- and inter-assay coefficients of variation were respectively 12.8 % (n?=?10) and 10.9 to 13.6 % (n?=?10). We established utility of the method by showing induction of the enzyme by dexamethasone in mouse pheochromocytoma cells and strong relationships to PNMT gene expression and tissue epinephrine levels in human pheochromocytomas. Development of this assay provides new possibilities for investigations focusing on regulation of PNMT, the crucial final enzyme responsible for synthesis of epinephrine, the primary fight-or-flight stress hormone.
Figure
Assay principle of double stale isotope UPLC-MS/MS quantification of tissue content and activity of PNMT
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号