首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling
Authors:Dr Kang Cheng  Bang Gu  Xiaoliang Liu  Dr Jincan Kang  Prof?Dr Qinghong Zhang  Prof?Dr Ye Wang
Institution:State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
Abstract:The direct synthesis of lower (C2 to C4) olefins, key building‐block chemicals, from syngas (H2 /CO), which can be derived from various nonpetroleum carbon resources, is highly attractive, but the selectivity for lower olefins is low because of the limitation of the Anderson–Schulz–Flory distribution. We report that the coupling of methanol‐synthesis and methanol‐to‐olefins reactions with a bifunctional catalyst can realize the direct conversion of syngas to lower olefins with exceptionally high selectivity. We demonstrate that the choice of two active components and the integration manner of the components are crucial to lower olefin selectivity. The combination of a Zr–Zn binary oxide, which alone shows higher selectivity for methanol and dimethyl ether even at 673 K, and SAPO‐34 with decreased acidity offers around 70 % selectivity for C2–C4 olefins at about 10 % CO conversion. The micro‐ to nanoscale proximity of the components favors the lower olefin selectivity.
Keywords:bifunctional catalysts  C−  C coupling  heterogeneous catalysis  synthesis gas  zeolites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号