首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diamagnetic Raman Optical Activity of Chlorine,Bromine, and Iodine Gases
Authors:Dr Jaroslav Šebestík  Dr Josef Kapitán  Ondřej Pačes  Prof Petr Bouř
Institution:1. Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic;2. Department of Optics, Palacky University, Olomouc, Czech Republic
Abstract:Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012 , 51, 11058; Angew. Chem. 2012 , 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground‐state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10?4. These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.
Keywords:angular momentum theory  diamagnetic molecules  excited electronic states  magnetic field  Raman optical activity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号