首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DFT Study on the Gold(I)-Catalyzed Dehydrogenative Heterocyclization of 2-(1-Alkynyl)-2-alken-1-ones to form 2,3-Furan-Fused Carbocycles: Effects of Additives C5H5NO vs. PhNO
Authors:Binfang Yuan  Jinyang Chen  Guangzhao Wang  Fulan Zhang  Luqiu Fang  Xiaogang Guo  Huisheng Huang  Rongxing He
Institution:1. Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100 China;2. College of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials, Technology, Yangtze Normal University, Fuling, Chongqing, 408100 China;3. College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 China
Abstract:A computational study with the M06/B3LYP density functional is carried out to explore the effects of additives C5H5NO vs. PhNO on the gold-catalyzed dehydrogenative heterocyclization of 2-(1-alkynyl)-2-alken-1-ones to form 2,3-furan-fused carbocycles. The following three conclusions are obtained based on our theoretical calculations. (a) The Au(I) catalyst plays a crucial role on the intramolecular cyclization reaction. (b) Both additives C5H5NO and PhNO as the proton shuttle can assist proton-transfer through a two-step proton-transfer mechanism including the protonation of additive and the deprotonation of additive-H+, whereas the catalytic capability of PhNO is weaker than that of C5H5NO (energy barrier: 90.6 vs. 33.2 kJ/mol). (c) C5H5NO-H+ has stronger stability comparing with PhNO-H+ because the basicity of C5H5NO is stronger than that of PhNO, which cause that the energy barrier of ts3 + PhNO-H+ (131.5 kJ/mol) is higher than that of ts3 + C5H5NO-H+ (60.5 kJ/mol) in the intermolecular addition. Therefore, the base strength is the primary factor that controls the catalytic capability of additives C5H5NO vs. PhNO. These studies are expected to improve our understanding of Au(I)-catalyzed reactions involving additive as the cocatalyst and to provide guidance for the future design of new catalysts and new reactions.
Keywords:DFT  proton-shuttle  proton-transfer  reaction mechanism  roles of additive
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号