首页 | 本学科首页   官方微博 | 高级检索  
     


Enzyme Conformation Influences the Performance of Lipase-powered Nanomotors
Authors:Dr. Lei Wang  Dr. Marzia Marciello  Dr. Miquel Estévez-Gay  Dr. Paul E. D. Soto Rodriguez  Dr. Yurena Luengo Morato  Dr. Javier Iglesias-Fernández  Prof. Dr. Xin Huang  Prof. Dr. Sílvia Osuna  Dr. Marco Filice  Dr. Samuel Sánchez
Affiliation:1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China;2. Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain;3. Compbiolab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurelia Capmany 69, 17003 Girona, Spain;4. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10–12, 08028 Barcelona, Spain;5. Compbiolab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurelia Capmany 69, 17003 Girona, Spain

Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain

Abstract:Enzyme-powered micro/nanomotors have myriads of potential applications in various areas. To efficiently reach those applications, it is necessary and critical to understand the fundamental aspects affecting the motion dynamics. Herein, we explored the impact of enzyme orientation on the performance of lipase-powered nanomotors by tuning the lipase immobilization strategies. The influence of the lipase orientation and lid conformation on substrate binding and catalysis was analyzed using molecular dynamics simulations. Besides, the motion performance indicates that the hydrophobic binding (via OTES) represents the best orienting strategy, providing 48.4 % and 95.4 % increase in diffusion coefficient compared to hydrophilic binding (via APTES) and Brownian motion (no fuel), respectively (with C[triacetin] of 100 mm ). This work provides vital evidence for the importance of immobilization strategy and corresponding enzyme orientation for the catalytic activity and in turn, the motion performance of nanomotors, and is thus helpful to future applications.
Keywords:enzyme catalysis  lipase  nanomotors  molecular dynamics simulations  nanobiotechnology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号