首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Iron-Catalysed Radical Polymerisation by Living Bacteria
Authors:Mechelle R Bennett  Dr Pratik Gurnani  Prof Phil J Hill  Prof Cameron Alexander  Prof Frankie J Rawson
Institution:1. Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD UK;2. Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD UK;3. Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD UK
Abstract:The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria-mediated iron-catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal-chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water-soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate “unnatural” polymers in the presence of “host” cells, thus setting up the possibility of making natural–synthetic hybrid structures and conjugates.
Keywords:Biohybrid-Materialien  Eisen-Katalyse  Polymere  Radikalische Polymerisation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号