首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct Observation of Dynamic Bond Evolution in Single-Atom Pt/C3N4 Catalysts
Authors:Linwen Zhang  Dr Ran Long  Dr Yaoming Zhang  Delong Duan  Prof Yujie Xiong  Dr Yajun Zhang  Prof Yingpu Bi
Institution:1. State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, Gansu, 730000 P. R. China

University of Chinese Academy of Sciences, Beijing, 100049 P. R. China;2. Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China;3. State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, Gansu, 730000 P. R. China

Abstract:Single-atom catalysts are promising platforms for heterogeneous catalysis, especially for clean energy conversion, storage, and utilization. Although great efforts have been made to examine the bonding and oxidation state of single-atom catalysts before and/or after catalytic reactions, when information about dynamic evolution is not sufficient, the underlying mechanisms are often overlooked. Herein, we report the direct observation of the charge transfer and bond evolution of a single-atom Pt/C3N4 catalyst in photocatalytic water splitting by synchronous illumination X-ray photoelectron spectroscopy. Specifically, under light excitation, we observed Pt−N bond cleavage to form a Pt0 species and the corresponding C=N bond reconstruction; these features could not be detected on the metallic platinum-decorated C3N4 catalyst. As expected, H2 production activity (14.7 mmol h−1 g−1) was enhanced significantly with the single-atom Pt/C3N4 catalyst as compared to metallic Pt-C3N4 (0.74 mmol h−1 g−1).
Keywords:Bindungsentwicklung  Einzelatom-Katalyse  Ladungsübertragung  Photokatalyse  Wasserstoff
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号