首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Turn-on fluorescent probe for Zn2+ ions based on thiazolidine derivative
Authors:Hayriye Genç Bilgiçli  Ahmet T Bilgiçli  Arma?an Günsel  Burak Tüzün  Derya Ergön  M Nilüfer Yarasir  Mustafa Zengin
Institution:1. Department of Chemistry, Sakarya University, 54050 Sakarya, Turkey;2. Department of Chemistry, Cumhuriyet University, Sivas, Turkey
Abstract:In this study, simple on–off fluorescent/UV–visible (UV–Vis) probes were easily prepared using 2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid ( Sen-1 ) and/or 2-(2-hydroxy-5-nitrophenyl)thiazolidine-4-carboxylic acid ( Sen-2 ) for fast detection of Zn2+ ions. Their sensing properties towards common metal ions were investigated using UV–Vis and fluorescence spectroscopies. Sen-1 and Sen-2 displayed a significant change with the addition of Zn2+ ions in the UV–Vis spectra. The addition of Zn2+ ions induced a 104 nm bathochromic shift for Sen-1 . The binding ratio towards Zn2+ metal ions was determined to be 1:1 by using Job plot analysis and fluorescence spectroscopy. The association constant and free energy (ΔG) of Sen-1 and Sen-2 towards Zn2+ ions were calculated by the Benesi–Hildebrand equation. The limit of detection of Sen-1 towards Zn2+ ions is 3.73 × 10?8 M, which is about 1/100 of the value recommended by the World Health Organization for drinking water. Sen-1 was successfully applied to detect Zn2+ ions in water samples and the fluorescence test strip was prepared for visual detection of Zn2+ ions. Finally, the quantum chemical parameters of Sen-1 and Sen-2 , such as highest occupied molecular orbital, lowest unoccupied molecular orbital, and chemical hardness, were investigated by the Becke, three-parameter, Lee–Yang–Parr, Hartree–Fock, and M062x methods.
Keywords:quantum chemical calculation  test kit  thiazodiline  zinc fluorescence sensor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号