Affiliation: | 1. Faculty of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819 China;2. Faculty of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819 China Contribution: Data curation, Formal analysis, Software;3. Faculty of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819 China Contribution: Resources |
Abstract: | Probing into the new heterostructure based on metal–organic frameworks (MOFs) and optimizing their photocatalytic efficiency under solar energy irradiation are one of hot topics in extending applications of MOFs in photocatalytic technology. Inspired by the excellent visible-light responses and photocatalytic activities of inorganic silver salts, in this work, we focused on the construction of hybrid photocatalysts involving Ag-MOF and silver cyanamide (Ag2NCN). Two opposite in situ synthesis routes were adopted, which are hydrothermally producing Ag-MOF in the presence of Ag2NCN (route A) or precipitating Ag2NCN in the existence of Ag-MOF (route B), and the mass ratio of Ag2NCN vs. Ag-MOF was optimized. The morphology and structure character show that the synthetic routes have no obvious influences on the crystal structure, but change the morphology and size of final hybrid photocatalysts. The photocatalytic degradation of Rhodamine B under simulated solar energy has been tested to evaluate the photocatalytic activities for resulting hybrids. Compared to single Ag-MOF and Ag2NCN, the enhanced photocatalytic rates are represented by the hybrids. The electrochemical analyses and the active species trapping experiments were conducted to clarify the photocatalytic mechanism for resulting hybrids. The good recycling photocatalytic results indicate the prospect applications of Ag-MOF based hybrid photocatalysts. |