首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metal–organic frameworks as efficient materials for drug delivery: Synthesis,characterization, antioxidant,anticancer, antibacterial and molecular docking investigation
Authors:Ashraf A El-Bindary  Elshahat A Toson  Kamel R Shoueir  Hind A Aljohani  Magy M Abo-Ser
Institution:1. Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517 Egypt;2. Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt;3. Chemistry Department, College of Al Wajh, Tabuk University, Al Wajh, 71491 Saudi Arabia
Abstract:Metal–organic framework (MOF) nano particles are a class of promising porous nano materials for biomedical applications. Owing to its high loading potential and pH-sensitive degradation, most promising of the MOFs is the zeolitic imidazolate crystal framework (ZIF-8), a progressive useful material for small molecule distribution. Doxorubicin (DOX), designated as a classical drug, was jobwise entrapped in ZIF-8 nano particles. ZIF-8 nano particles, as a novel carrier, were used to monitor the release of the anticancer drug DOX and prevent it from dissipating before reaching its goal. ZIF-8 nano particles with encapsulated DOX (DOX@ZIF-8) can be synthesized in a single pot by incorporation of DOX into the reaction mixture. MOFs and the designed drug delivery (DOX@ZIF-8) system were characterized by Fourier transfer infrared, scanning electron microscopy, N2 sorption isotherm and X-ray diffraction. The impact of MOFs and the engineered drug delivery system on the viability of human breast and liver cancer cell lines was evaluated. The loaded drug was released at pH 5 faster than at pH 7.4. The nano particles of ZIF-8 showed low cytotoxicity, while DOX@ZIF-8 showed high cytotoxicity to HepG-2 and MCF-7 cells compared with free DOX at the equivalent concentration of DOX of >12.5 μg/ml. These findings indicate that DOX@ZIF-8 nano particles are a promising method for the delivery of cancer cells to drugs. Furthermore, ZIF-8, DOX and encapsulated DOX@ZIF-8 compounds were screened for their potential antibacterial activities against pathogenic bacteria compared with standard antibiotics by the agar well diffusion technique. The results demonstrate that the DOX@ZIF-8 exhibits a strong inhibition zone against Gram-negative strains (Escherichia coli) in comparison with the reference drug gentamycin. The docking active site interactions were evaluated to predict the binding between DOX with the receptor of breast cancer 3hb5-oxidoreductase and liver cancer 2h80-lipid binding protein for anticancer activity.
Keywords:anticancer  doxorubicin  drug delivery  molecular docking  ZIF-8
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号