首页 | 本学科首页   官方微博 | 高级检索  
     


Mitochondria-Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo
Authors:Meiru Lu  Aihua Qu  Dr. Si Li  Prof. Maozhong Sun  Prof. Liguang Xu  Prof. Hua Kuang  Prof. Chuanlai Xu
Affiliation:Key Lab of Synthetic and Biological Colloids, Ministry of Education, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Abstract:Cellular senescence is stress-induced, irreversible growth arrest, and is thought to impair tissue function. The clearance of senescent cells can delay the features of senescence. Herein, we report the development of plasmonic core–shell spiky nanorods (CSNRs) surface-modified with an anti-beta-2-microglobulin (aB2MG) antibody and triphenylphosphonium (TPP), to target the mitochondria in senescent cells. aB2MG-TPP@CSNRs irradiated with near-infrared (NIR) light selectively caused mitochondrial damage and apoptosis of senescent cells with relatively low NIR light power, and the ability of CSNRs to activate and amplify the immune response in vitro and in vivo was discovered. The photo-induced generation of reactive oxygen species (ROS) resulted in senescent-cell apoptosis and immune adjuvant effect by CSNRs accelerated the clearance of senescent cells in mice. This study opens the way for the use of precisely regulated plasmonic nanostructures for immune adjuvant and photo-induced apoptosis for age-related senescence.
Keywords:apoptosis  bionanotechnology  photochemistry  reactive oxygen species  senescence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号