首页 | 本学科首页   官方微博 | 高级检索  
     


Allosteric Inhibition of the SARS-CoV-2 Main Protease: Insights from Mass Spectrometry Based Assays**
Authors:Dr. Tarick J. El-Baba  Dr. Corinne A. Lutomski  Dr. Anastassia L. Kantsadi  Tika R. Malla  Tobias John  Dr. Victor Mikhailov  Dr. Jani R. Bolla  Prof. Christopher J. Schofield  Prof. Nicole Zitzmann  Prof. Ioannis Vakonakis  Prof. Carol V. Robinson
Affiliation:1. Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd., OX1 3QZ Oxford, UK;2. Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK;3. Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, OX1 3TA Oxford, UK
Abstract:The SARS-CoV-2 main protease (Mpro) cleaves along the two viral polypeptides to release non-structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus-2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro. Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd=0.14±0.03 μM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme-substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x-ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity.
Keywords:allosteric inhibitors  drug development  proteases  native mass spectrometry  SARS-CoV-2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号