首页 | 本学科首页   官方微博 | 高级检索  
     


Panos-Fermented Extract-Mediated Nanoemulsion: Preparation,Characterization, and In Vitro Anti-Inflammatory Effects on RAW 264.7 Cells
Authors:Rui Zhang  Esrat Jahan Rupa  Siwen Zheng  Jinnatun Nahar  Deok Chun Yang  Se Chan Kang  Yingping Wang
Affiliation:1.State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (R.Z.); (S.Z.);2.Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Korea; (E.J.R.); (J.N.); (D.C.Y.)
Abstract:This study focused on developing Panos nanoemulsion (P-NE) and enhancing the anti-inflammatory efficacy for the treatment of inflammation. The effects of P-NE were evaluated in terms of Nitric oxide (NO production) in Lipopolysaccharide (LPS), induced RAW 264.7 cells, Reactive oxygen species (ROS) generation using Human Keratinocyte cells (HaCaT), and quantitative polymerase chain reaction (qPCR) analysis. Sea buckthorn oil, Tween 80, and span 80 were used and optimize the process. Panos extract (P-Ext) was prepared using the fermentation process. Further high-energy ultra-sonication was used for the preparation of P-NE. The developed nanoemulsion (NE) was characterized using different analytical methods. Field emission transmission electron microscopy (FE-TEM) analyzed the spherical shape and morphology. In addition, stability was analyzed by Dynamic light scattering (DLS) analysis, where particle size was analyzed 83 nm, and Zeta potential −28.20 ± 2 (mV). Furthermore, 90 days of stability was tested using different temperatures conditions where excellent stability was observed. P-NE are non-toxic in (HaCaT), and RAW264.7 cells up to 100 µg/mL further showed effects on ROS and NO production of the cells at 50 µg/mL. The qPCR analysis demonstrated the suppression of pro-inflammatory mediators for (Cox 2, IL-6, IL-1β, and TNF-α, NF-κB, Ikkα, and iNOS) gene expression. The prepared NE exhibited anti-inflammatory effects, demonstrating its potential as a safe and non-toxic nanomedicine.
Keywords:panos   nanoemulsion   anti-inflammatory   ultrasonication   ROS generation   NO production
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号