首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Alternating current electrical conductivity of high-density polyethylene-carbon nanofiber composites
Authors:L -X He and S -C Tjong
Institution:1.Department of Physics and Materials Science,City University of Hong Kong,Kowloon,Hong Kong
Abstract:High-density polyethylene (HDPE)-carbon nanofiber (CNF) composites with good dispersion of fillers in the polymer matrix were melt-compounded in a Haake mixer. The dependences of the alternating current conductivity of such nanocomposites on the filler content, temperature, and DC bias were investigated. The results showed that the electrical conducting behavior of HDPE-CNF nanocomposites can be well characterized by the direct current conductivity ( sDC \sigma_{{{\rm DC}}}^{} , characteristic frequency (fc) and critical exponent (s . It was found that sDC \sigma_{{{\rm DC}}}^{} of percolating HDPE-CNF nanocomposites increases with increasing filler concentration and follows the scaling law of percolation theory. Increasing temperature caused a reduction of sDC \sigma_{{{\rm DC}}}^{} , leading to the occurrence of positive-temperature-coefficient effect near the melting temperature of HDPE matrix. Application of DC bias led to an increase of sDC \sigma_{{{\rm DC}}}^{} due to the creation of additional conducting paths within the polymer composites. The characteristic frequency generally followed the same tendency as sDC \sigma_{{{\rm DC}}}^{} . The s values of percolating composites were slightly higher than those predicted by the percolation theory, indicating the presence of tunneling or hopping conduction in these composites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号