首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism and reaction rate of the karl-fischer titration reaction: Part I. Potentiometric measurements
Authors:JC Verhoef  E Barendrecht
Institution:Laboratory of Analytical Chemistry, Free University, de Boelelaan 1085, Amsterdam (The Netherlands);Laboratory of Electrochemistry, Technical University, P.O. Box 513, Eindhoven (The Netherlands)
Abstract:The reaction rate of the coulometric variant of the Karl-Fischer titration reaction (in which electrolytically generated triiodide is used as oxidant instead of iodine) has been measured in methanol. The reaction is first order in water, sulfur dioxide and triiodide, respectively. For pH<5 the reaction rate constant decreases logarithmically with decreasing pH. Addition of pyridine solely influences the pH (by fixing it to a value of about 6) and has no direct influence on the reaction rate. A linear relation exists between the reaction rate constant and the reciprocal value of the iodide concentration, from which we can calculate the individual reaction rates for the oxidation by iodine and triiodide, respectively. While the reaction rate constant for triiodide is relatively small (k3≈350 l2 mol?2s?1), the reaction rate constant for iodine is much larger (k3≈1.5×107 l2 mol?2 s?1.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号