首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermochemistry of the fluoroformyloxyl radical: a computational study based on coupled cluster theory
Authors:Breidung Jürgen  Thiel Walter
Institution:Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim, Germany.
Abstract:The standard enthalpy of formation of FCO(2) (X (2)B(2)) was determined by a computational approach based on coupled cluster theory CCSD(T)] with energies extrapolated to the basis-set limit, with additional corrections accounting for core-valence correlation, scalar relativity, spin-orbit coupling, and zero-point vibrational motions. Utilizing a variety of independent reaction schemes, our best estimate is Delta(f)H(o)(0)(FCO(2)) = -86.0 +/- 0.6 kcal mol(-1) Delta(f)H(o)(298) )(FCO(2)) = -86.7 +/- 0.6 kcal mol(-1)], which is shown to be more accurate than previous theoretical and experimental values. The chosen computational procedure was also applied to HCO (X (2)A'), where we find excellent agreement with experiment, and to FCO (X (2)A'), where we recommend an improved value of Delta(f)H(o)(0)(FCO) = -42.1 +/- 0.5 kcal mol(-1) Delta(f)H(o)(298)(FCO) = -42.0 +/- 0.5 kcal mol(-1)]. Further theoretical results concern the C-F bond dissociation energy, electron affinity, ionization energy, first and second excitation energies in FCO(2), fluoride ion affinity of CO(2), and equilibrium geometries of the molecules treated presently. For FCO (X (2)A') we propose an improved equilibrium structure: r(e)(CF) = 132.5(2) pm, r(e)(CO) = 116.7(2) pm, and theta(e)(FCO) = 127.8(2)(o).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号