首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synchronization in interdependent networks
Authors:Um Jaegon  Minnhagen Petter  Kim Beom Jun
Institution:School of Physics, Korea Institute for Advanced Study, 130-722 Seoul, Korea.
Abstract:We explore the synchronization behavior in interdependent systems, where the one-dimensional (1D) network (the intranetwork coupling strength J(I)) is ferromagnetically intercoupled (the strength J) to the Watts-Strogatz (WS) small-world network (the intranetwork coupling strength J(II)). In the absence of the internetwork coupling (J=0), the former network is well known not to exhibit the synchronized phase at any finite coupling strength, whereas the latter displays the mean-field transition. Through an analytic approach based on the mean-field approximation, it is found that for the weakly coupled 1D network (J(I)?1) the increase of J suppresses synchrony, because the nonsynchronized 1D network becomes a heavier burden for the synchronization process of the WS network. As the coupling in the 1D network becomes stronger, it is revealed by the renormalization group (RG) argument that the synchronization is enhanced as J(I) is increased, implying that the more enhanced partial synchronization in the 1D network makes the burden lighter. Extensive numerical simulations confirm these expected behaviors, while exhibiting a reentrant behavior in the intermediate range of J(I). The nonmonotonic change of the critical value of J(II) is also compared with the result from the numerical RG calculation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号