首页 | 本学科首页   官方微博 | 高级检索  
     检索      

甲醇水蒸气重整制氢反应条件的优化
引用本文:张磊,潘立卫,倪长军,赵生生,王树东,胡永康,王安杰,蒋凯.甲醇水蒸气重整制氢反应条件的优化[J].燃料化学学报,2013,41(1):116-122.
作者姓名:张磊  潘立卫  倪长军  赵生生  王树东  胡永康  王安杰  蒋凯
作者单位:1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; 2. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; 3. Fushun Research Institute of Petroleum and Petrochemicals, Fushun 113001, China
基金项目:国家自然科学基金(21076206);国家重点基础研究发展规划(973计划,2010CB732302);国家高技术研究发展计划(863计划,2011AA050706)
摘    要:对共沉淀法制备的CuO/ZnO/CeO2-ZrO2催化剂在甲醇水蒸气重整制氢反应体系中的性能进行了考察,并利用统计学实验设计方法对该反应的反应条件进行了优化。选择反应温度、水醇比和甲醇气体空速为独立要因,利用全因子实验设计方法,得到反应温度对两个响应值(甲醇转化率和重整气中CO物质的量分数)的影响最为显著,甲醇气体空速对重整气中CO物质的量分数的影响最小。固定甲醇气体空速为300 h-1,利用中心旋转组合设计实验方法对反应温度和水醇比进行优化,得出当反应温度在249~258℃、水醇比在1.76~2.00时,甲醇能全部转化,重整气中CO物质的量分数小于0.5%。此模型的计算值与实验结果较为接近,表明采用统计学实验设计方法得出的结论对甲醇水蒸气重整制氢反应条件的优化具有指导意义。

关 键 词:全因子设计  中心旋转组合设计  响应曲面  甲醇水蒸气重整  氢气  优化  
收稿时间:2012-07-05

Optimization of methanol steam reforming for hydrogen production
ZHANG Lei,PAN Li-wei,NI Chang-jun,ZHAO Sheng-sheng,WANG Shu-dong,HU Yong-kang,WANG An-jie,JIANG Kai.Optimization of methanol steam reforming for hydrogen production[J].Journal of Fuel Chemistry and Technology,2013,41(1):116-122.
Authors:ZHANG Lei  PAN Li-wei  NI Chang-jun  ZHAO Sheng-sheng  WANG Shu-dong  HU Yong-kang  WANG An-jie  JIANG Kai
Institution:1(1.Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China; 2.State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116023,China; 3.Fushun Research Institute of Petroleum and Petrochemicals,Fushun 113001,China)
Abstract:The catalytic performance of CuO/ZnO/CeO2/ZrO2 prepared by co-precipitation for methanol steam reforming was investigated using a statistical set of experiments in order to optimize the reaction conditions for obtaining minimal carbon monoxide in the reformed gas. The reaction temperature, steam to methanol ratio, methanol gas hourly space velocity (GHSV) were evaluated with a full factorial design experiment. The reaction temperature displayed much greater influence on the response (methanol conversion and CO concentration in reformed gas), GHSV has minimal influence on the CO concentration in reformed gas. At a fixed low methanol GHSV (300 h-1), a central composite rotatable design was then used to approximate the optimal conditions by simultaneously considering the methanol conversion and CO concentration. The optimum theoretical conditions were found to lie within a reaction temperature of 249~258℃ and a W/M ratio of 1.76~2.00, in close agreement with the experimental results.
Keywords:full factorial design  central composite rotatable design (CCRD)  response surface  methanol steam reforming  hydrogen  optimization  
本文献已被 CNKI 等数据库收录!
点击此处可从《燃料化学学报》浏览原始摘要信息
点击此处可从《燃料化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号