首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of Reppe's nickel-catalyzed ethyne tetramerization to cyclooctatetraene: a DFT study
Authors:Straub Bernd F  Gollub Caroline
Affiliation:Department Chemie der Ludwig-Maximilians-Universit?t, München, Butenandtstr. 5-13, (Haus F), 81377 München, Germany. Bernd.F.Straub@cup.uni-muenchen.de
Abstract:In this B3 LYP model study, homoleptic nickel(0) ethyne complexes have been predicted as the catalyst resting state for the title reaction. Ethyne ligand coupling of Ni(C(2)H(2))(3) yields monoethyne nickelacyclopentadiene in the rate-determining step. Ethyne coordination is followed by insertion of an ethyne ligand into the Ni--C sigma bond. A highly strained monoethyne trans-nickelacycloheptatriene is formed. This trans intermediate is unable to reductively eliminate benzene without prior isomerization to a cis-structure. Instead, it rapidly collapses to a nickelacyclononatetraene. Ethyne coordination induces reductive elimination to the cyclooctatetraene complex Ni(eta(2)-C(2)H(2))(eta(2)-C(8)H(8)), followed by facile ligand exchange. Other ethyne coupling pathways have been computed to be less favored. The cyclooctatetraene ligand binds significantly weaker to nickel(0) than ethyne, both for mononuclear, and for dinuclear species. For this reason, C--C bond formation steps at Ni(2)(micro-cot) fragments have been predicted to feature prohibitively high overall reaction barriers.
Keywords:alkyne ligands  C?C coupling  density functional calculations  homogeneous catalysis  nickel
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号