首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical characterization of photoisomerization channels of dimethylpyridines on the singlet and triplet potential energy surfaces
Authors:Cao Z  Zhang Q  Peyerimhoff S D
Institution:Department of Chemistry, Xiamen University, China. zxcao@xmu.edu.cn
Abstract:Photoexcitations and photoisomerizations due to low-lying n pi* and pi pi* excited states of dimethylpyridines are investigated by density functional theory, CASSCF, CASPT2 and MRCI methodologies. Mechanistic details for the formation of Dewar dimethylpyridines and the interconversions of dimethylpyridines are rationalized through the characterization of minima and transition states on the singlet and triplet potential energy surfaces of relevant intermediates. Our present theoretical schemes suggest that Mobius dimethylpyridine intermediate 14 and azabenzvalene intermediate 10 can serve as possible precursors to Dewar dimethylpyridines and singlet phototransposition products, respectively. The calculations suggest that an S1(pi pi*)/S0 conical intersection in dimethylpyridines 2 is involved in the formation of 14. An azabenzvalene 10 might be formed through S2(pi pi*)/S1(n pi*) interaction followed by an S1/S0 decay in dimethylpyridine 6. Calculated barriers of isomerizations from 14 to Dewar dimethylpyridine 7 and from 10 to 4 are 8.4 and 28.5 kcal mol(-1) at the B3LYP/6-311 G** level, respectively. In the suggested triplet multistage transposition mechanism, an out-of-plane distorted geometry 19 due to vibrational relaxation of the T1(3B1) excited state of 3,5-dimethylpyridine 6 is a precursor of the interconversion of 6 to 2.4-dimethylpyridine 4. The formation of a triplet azaprefulvene 21 with a barrier of 20.7 kcal mol(-1) is a key step during the triplet migration process leading to another out-of-plane distorted structure 27. Subsequent rearomatization of 27 completes the interconversion of 6 with 4. Present calculations provide some insight into the photochemistry of dimethylpyridines at 254 nm.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号