首页 | 本学科首页   官方微博 | 高级检索  
     

多功能芯片对合成样本中肝癌细胞HepG2的测试研究
引用本文:张泽杰,苏喜,徐溢,陈李. 多功能芯片对合成样本中肝癌细胞HepG2的测试研究[J]. 分析化学, 2017, 45(11). DOI: 10.11895/j.issn.0253-3820.171092
作者姓名:张泽杰  苏喜  徐溢  陈李
作者单位:1. 重庆大学 化学化工学院,重庆 400044;重庆大学 微纳系统及新材料技术国际研发中心 ,重庆 400044;2. 重庆大学 新型微纳器件与系统技术重点学科实验室,重庆 400044;重庆大学 化学化工学院,重庆 400044;重庆大学 微纳系统及新材料技术国际研发中心 ,重庆 400044;3. 重庆大学 新型微纳器件与系统技术重点学科实验室,重庆 400044;重庆大学 化学化工学院,重庆 400044;重庆大学 光电工程学院微系统研究中心,重庆 400044;重庆大学 微纳系统及新材料技术国际研发中心 ,重庆 400044;4. 重庆大学 新型微纳器件与系统技术重点学科实验室,重庆 400044;重庆大学 光电工程学院微系统研究中心,重庆 400044;重庆大学 微纳系统及新材料技术国际研发中心 ,重庆 400044
基金项目:国家自然科学基金项目,国家高技术研究发展计划(863)项目,重庆市前沿研究重点项目,重庆市科学技术委员会社会民生科技创新项目 (No. cstc2015shms zx00014)资助This work was supported by the National Natural Science Foundation of China,the National High Technology Research and Development Program of China (863 program),the Frontier Research Key Projects of Chongqing Science and Technology Committee
摘    要:设计并制作了一种集多孔流分离(Multi-orifice flow fractionation,MOFF)技术与磁捕获技术于一体的用于特异性分离和捕获合成样本中肝癌细胞HepG2的多功能微流控细胞芯片.此芯片由玻璃基片和PDMS微通道盖片组成,PDMS盖片上含有3条进样通道、MOFF分离区和六边形腔体的细胞富集检测区.其中,MOFF分离区总长20 mm,由80组长度为0.18 mm、深度为50μm、收缩区域宽度为0.06 mm、扩张区域宽度为0.20 mm的半菱形收缩/扩张重复单元组成,每组收缩/扩张重复单元间的夹角为103.0°.实验以肝癌细胞HepG2-血细胞混悬液为样本;根据磁珠表面修饰c-Met抗体能与肝癌细胞HepG2特异性结合的原理,通过表面羧基化的磁珠、EDC(1 mg/mL)、NHS(1 mg/mL)和c-Met抗体制备了浓度为50μg/mL的免疫磁珠(Anti-MNCs)悬浮液.在样本流速为50μL/min条件下,利用外加磁场实现了血细胞合成样本中微量肝癌细胞HepG2的有效捕获;采用微波加热法以柠檬酸、硫脲为原料制备了用于荧光标记HepG2的碳量子点,在芯片上实现了血液中肝癌细胞HepG2的原位荧光可视化观测.对芯片检测区捕获到的HepG2进行了显微计数分析,对500μL血细胞(107 cell/mL)中含10个HepG2细胞的合成样本,捕获效率达到88.5%±6.7%(n=20).结果表明,所设计的多模式多功能的微流控芯片具有良好的肿瘤细胞分离和检测功能.

关 键 词:微流控芯片  多孔流分离  磁捕获  荧光可视化  肝癌细胞HepG2

Detection of HepG2 Cells in Artificial Samples by Multifunctional Microfluidic Chip
ZHANG Ze-Jie,SU Xi,XU Yi,CHEN Li. Detection of HepG2 Cells in Artificial Samples by Multifunctional Microfluidic Chip[J]. Chinese Journal of Analytical Chemistry, 2017, 45(11). DOI: 10.11895/j.issn.0253-3820.171092
Authors:ZHANG Ze-Jie  SU Xi  XU Yi  CHEN Li
Abstract:A multi-functional microfluidic chip with multi-orifice flow fractionation ( MOFF) and magnetic capture technique was developed to specifically separate and capture the HepG2 cells in artificial samples. The chip contained a glass substrate and a polydimethylsiloxane ( PDMS) microchannel cover plate. The PDMS cover plate consisted of 3 injection channels of 10-mm-long, a MOFF separation zone and a hexagonal cavity cell enrichment-detection zone. Among which, the MOFF separation zone had a total length of 20 mm and was consisted of 80 semi-rhombic shrinkage / expansion units with a length of 0. 18 mm, a depth of 50 μm, a shrinkage area width of 0. 06 mm, and an expansion area of 0. 20 mm. The angle between each group of shrinkage / expansion units was 103. 0°. In this experiment, HepG2-blood cell suspension was used as the sample. Based on the principle that the magnetic bead surface-modified c-Met antibody could specifically bind to HepG2 cells, an immunomagnetic bead ( Anti-MNCs) suspension at a concentration of 50 μg / mL was prepared by surface carboxylated beads, EDC (1 mg / mL), NHS (1 mg / mL) and c-Met antibody. Under the optimized flow rate (50 μL/ min), a few HepG2 in suspension samples were efficiently captured at the detection zone of chip via a magnetic field; the carbon quantum dots were prepared by microwave heating with citric acid and thiourea to label HepG2 cells which achieved in-situ fluorescence visualization of captured HepG2. Cells captured in the chip detection area were counted by microscope. The capture rate of HepG2 cells was 88. 5% ±6. 7% (106 blood cells and 10 HepG2 cells per 500 μL). The results demonstrated that the developed multifunctional microfluidic chip may serve as a promising tool for separation and capture of tumour cells.
Keywords:Microfluidic chip  Multi-orifice flow fractionation  Magnetic capture  Fluorescence visualization  HepG2
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号