首页 | 本学科首页   官方微博 | 高级检索  
     


MKPLS approach: switching strategies for the non-linear multi-kernel PLSR
Authors:Raúl Rentería  Ruy Milidiú  Rafael Souza
Affiliation:1.Departamento de Informática,Pontifícia Universidade Católica do Rio de Janeiro,Gávea,Brazil
Abstract:We present two strategies to determine the kernel switching order for the non-linear multi-kernel PLSR algorithm. The multi-kernel PLS (MKPLS) algorithm builds upon a one kernel PLSR which uses a kernel matrix to hold the inner products of the projection of the independent data set onto a feature space. After building a PLSR model, MKPLS deflates the kernel matrix so that only that part which cannot be predicted by the model remains. This remainder is projected onto a different feature space and a new PLSR model is built. The switching algorithms presented for this approach address two questions: which kernel should be used at each iteration and; how many factors should be extracted before switching to another kernel.
Keywords:Partial least squares  Kernel methods  Multi-kernel  Kernel switching  Non-linear regression
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号